Help support TMP


"What Gene-Swapping Cheese Microbes Could Say ..." Topic


1 Post

All members in good standing are free to post here. Opinions expressed here are solely those of the posters, and have not been cleared with nor are they endorsed by The Miniatures Page.

Please do not use bad language on the forums.

For more information, see the TMP FAQ.


Back to the Food Plus Board


Areas of Interest

General

Featured Hobby News Article


Featured Recent Link


Featured Profile Article

Jot Arrow Magnets

Do you need direction in your wargaming?


Current Poll


Featured Book Review


298 hits since 29 Jul 2017
©1994-2024 Bill Armintrout
Comments or corrections?


TMP logo

Membership

Please sign in to your membership account, or, if you are not yet a member, please sign up for your free membership account.
Tango0129 Jul 2017 10:21 p.m. PST

…About Antibiotic Resistance.

"You and your favorite cheese—whether it's cheddar, Wensleydale, or a good aged goat brie—have something in common: You're both home to a constantly evolving menagerie of microbes. The bacteria inside you and your fermented dairy live together in a community called a biome, growing and changing in response to their environments. And they adapt to their homes—a cow's hide, a chunk of Swiss, or your gut—by stealing their neighbors' genes.

That genetic transfer has the ability to dramatically change a microbe. "You take this whole gene that you didn't have before, that has totally new functions that you've never had, and you just plop it into this bacterium and suddenly it can do this completely new and different thing," says Miriam Barlow, an antimicrobial resistance researcher at UC Merced. In humans, that's how antibiotic resistance can emerge—one bug evolves a mutation that helps it survive the onslaught of a drug, and it makes its way into the rest of the community. But to fully understand how resistance evolves, studying superbugs isn't enough: You need large, diverse bacterial boroughs to understand how bugs siphon off new genes.

The search for lively bacterial communities led Rachel Dutton, a microbiologist at UC San Diego, to cave-aged cheese wheels—the kind you can only pick up with both hands. She wanted to find an environment that would kill some bacteria, but let other interesting microbes survive. Microbes don't love cheese like humans do—it's acidic, salty, and dry for their tastes—but it's passable housing for some. If surviving antibiotics is like winning the lottery for a bacterium, inhabiting gruyere is like winning at bingo. "We have basically, in our freezer in lab, a few hundred vials of cheese," Dutton says.

That frozen cheese stockpile—which came from 10 different countries—provides plenty of microbes to survey. Dutton and her students isolate bacteria from a smidge of cheese rind, grow communities in petri dishes, then send samples off for genetic sequencing. "Each of these sequences is about four to five megabases, in other words, about 4 million A's, T's, G's and C's," says Kevin Bonham, a postdoc in Dutton's group. Bonham wrote code that lines up hundreds of bacterial species' genomes, plucks out each of their genes, and finds similarities between samples…"
Main page
link


Amicalement
Armand

Sorry - only verified members can post on the forums.